

# WRE: Assessing future changes in agricultural water demand

## Summary findings from key informant workshop

Joe Morris, Jerry Knox, David Haro, Tim Hess

09 March 2017





#### Introduction

In the WRE project, Task 2 "Agricultural water demand forecasts" involves developing a series of algorithms to estimate spatial changes in agricultural water demand taking into account future agronomic, agroclimatic, technical and socio-economic uncertainty. These algorithms will subsequently be embedded into the Anglian Water WRE regional water resource simulator, currently being developed by the University of Manchester and Atkins. This model represents all water resource zones in the WRE region, including sources of supply and centres of demand, as well as proposed new supply schemes. The simulator will be capable of evaluating multiple alternate system designs under a range of future scenario following a robust decision-making (RDM) approach. The model includes, among others, agricultural nodes and demands for irrigated agriculture operating under a range of contrasting agroclimatic and socio-economic scenarios.

In Task 2 (Part I)" (Knox et al. 2017), a methodology was developed to calculate the baseline agricultural water demand for each EA CAMS catchment, with demand varying as a function of agroclimate. The methodology to estimate future irrigation demand builds on this approach by incorporating a set of 'change factors' that are intended to capture the effects of different socio-economic drivers on future agricultural production. These 'change factors' represent the combination of various micro-components of demand which themselves vary depending on each contrasting socio-economic scenario, and are in addition to the effects of climate change on crop productivity (yield) and water use.

Estimating these 'change factors' for each agricultural sub-sector and socio-economic scenario is a complex exercise with a high degree of uncertainty. For this task, a qualitative approach was used to first develop a series of scenario narratives describing how agriculture might be impacted. From this, as set of qualitative estimates of change in the direction and magnitude of key micro-components that would shape future agricultural water demand were then developed. These will be used in the agricultural demand forecasting modelling. In order to inform the derivation of these 'change factors', a workshop involving key informants from the UK agricultural sector were invited to contribute their views and expert opinion on the drivers of change likely to impact on future agricultural water demand. The workshop was held on 15<sup>th</sup> February 2017 at Cranfield University. The participants included representatives from the AHDB levy board, growers, abstractor groups, AW, and researchers with interests in agricultural water resources (Table 1).

**Table 1** Participants attending the "WRE – Future agricultural water demand" workshop held at Cranfield University on 15<sup>th</sup> Feb 2017.

| Name                 | Affiliation          |
|----------------------|----------------------|
| Tim Darby            | ESWAG                |
| Paul Hammett         | NFU                  |
| David Matthews       | G&D Matthews         |
| Stuart Smith         | Atkins               |
| Hannah Stanley-Jones | Anglian Water        |
| Mike Storey          | AHDB                 |
| Keith Weatherhead    | Independent          |
| Joe Morris           | Cranfield University |
| Jerry Knox           | Cranfield University |
| Tim Hess             | Cranfield University |
| David Haro           | Cranfield University |

The workshop involved a series of structured discussions around a number of fundamental questions to determine the high-level drivers that might shape future agricultural production in the UK and thus how these might then translate into impacts within the irrigated sector. Aspects of the workshop also focused on the extent to which drivers had a national focus and where there might be regional dimensions. Five key questions were posed:

Q1. What are the key drivers affecting UK agriculture over the next 50 years? Is there an Anglian region dimension?

Q2. How do these drivers affect the main irrigation sub-sectors in the UK and Anglian region?

Q3. For two contrasting future scenario (Global Sustainability and Uncontrolled demand), what are the likely directions and magnitude of change in the micro-components of irrigation water demand?

What are the major differences in drivers between the two scenarios and likely expected differences in irrigation water demand?

Q4. What are the main gaps and uncertainties in our knowledge and understanding of Q1-3?

Q5. Brexit. What are the implications for irrigated agriculture and irrigation water demand in the UK and Anglian Region?

This report summarises the discussions and key findings from the workshop.

# Q1: What are the key drivers affecting UK agriculture over the next 50 years? Is there and Anglian region dimension?

The WRE project has adopted and developed four contrasting socio-economic scenario to assess future uncertainties in water demand. These scenarios are based in the combination of two main dimensions of change, governance and societal values. The first dimension ranges from a regional/local approach of governance to globalisation. In the first case, protection of local economies and self-sufficiency would be fostered as opposed to an open global market situation with free circulation of goods and commodities between countries. The second dimension ranges from a society adopting attitudes of sustainable behaviour to a society in which demand is uncontrolled (i.e. ranging from conservationism to consumerism). Appendix 3 includes key slides from a presentation given to the workshop participants to illustrate these concepts. The combination of two dimensions of change allows the development of four possible future socio-economic scenarios with different effects on UK agriculture, namely:

Scenario 1 (Sustainable, regionalisation)

Scenario 2 (Sustainable, globalisation)

Scenario 3 (Uncontrolled demand, regionalisation)

Scenario 4 (Uncontrolled demand, globalisation)

For each scenario, a series of detailed narratives were then produced in order to reflect the possible effects on different drivers on society including water consumption, economy and industry, at both the national level (Table 10) and more specifically for the agricultural sector (Table 11). These narratives are given in Appendix 2 and were sent to participants prior to attending the workshop.

After an introduction to the socio-economic scenario and their narratives, participants were asked to identify 3 key drivers they believed would exert a critical influence on the UK agricultural sector over the next *c*30 years (Table 2). Each participant was then invited to comment on the rationale for the drivers had they chosen.

| Participant | Driver                                                                            |
|-------------|-----------------------------------------------------------------------------------|
|             | Diet+Food choices (inc. population growth). What we eat and how much of it        |
| 1           | Standards and regulation: Food safety, environment, animal welfare,GM, pesticides |
|             | Brexit! Exchange rates and tariffs                                                |
|             | Restrictions on imports (tariffs, regulations, etc)                               |
| 2           | Crop yield changes (tonnes/ha & tonnes/m3 water)                                  |
|             | Food demand (population growth & diet changes)                                    |
|             | Climate Change                                                                    |
| 3           | Population growth                                                                 |
|             | (Need for) Cheap food                                                             |
|             | Global markets and competition                                                    |
| 4           | Government policy – subsidies,                                                    |
|             | Consumer preferences and trends                                                   |
|             | Climate uncertainty, greater variability in rainfall patterns plus reliability    |
| 5           | Impact of Brexit on UK agricultural policy plus tariffs trade agreements          |
|             | Competition for and access to water for agriculture (in Anglian region)           |
|             | Weather/Climate                                                                   |
| 6           | Food security/Access to international trade                                       |
|             | Food prices/viability of production                                               |

**Table 2** Participant feedback to Question 1 on key drivers affecting UK agriculture over the next 30 years.

| Participant | Driver                                                                       |
|-------------|------------------------------------------------------------------------------|
|             | Need for viable agricultural production businesses                           |
| 7           | Political influence/Public opinion                                           |
|             | Global security                                                              |
|             | Availability/Acceptability of crop protection products (where does GM fit/   |
| 8           | acceptance)                                                                  |
| 0           | Need for sustainable food supply affected by population and climate          |
|             | Relative value of pound vs other currencies., National/International         |
|             | Land price and availability                                                  |
| 9           | International commercial relationships (exchange rates)                      |
|             | Changes in dietary changes                                                   |
|             | Population growth (effects on land and on food demand)                       |
| 10          | Genetic Modification                                                         |
| 10          | Environmental regulation (payments for stewardship, failure of environmental |
|             | systems)                                                                     |

This introductory question was useful to prompt some initial thoughts and discussion with informed insights that confirmed the complexity of the challenge in understanding the high level drivers on agriculture. All the drivers identified for the agricultural sector cascade directly down into specific irrigation sub-sectors (horticulture, potatoes). The drivers identified by the participants could also be broadly grouped into general topics relating to policy/politics, population growth and associated food demand, future climate/weather, and commercial/economic relationships of the UK with the rest of the world. Of these four groups, policy drivers were identified bu the group as being the most dominant overall.

Regarding the Anglian region dimension, there was some consensus on the likely increase in competition for water resources, mainly because the projected changing population dynamics within the region are different to other parts of England (highest population increase rates and highest productive agricultural land). However, participants also agreed that there are several important drivers such as total food demand that are nationally determined and independent from any regional dimension.

The possibility of moving agricultural production out from Anglian region to other parts of the country was also discussed. The overall feeling was that Anglian region contains a unique series of production characteristics (fertile soils, favourable weather and established irrigation infrastructure) that give it a competitive advantage, which would constrain any attempts to move large-scale agricultural production (especially arable and some horticulture) to other parts of the country. Conversely, despite livestock production (notably pigs and poultry) also benefitting from some unique attributes within Anglian region, it was felt this sub-sector of agriculture could move more easily to other regions if necessary.

Finally, the following quotes reflect some of areas of discussion during this exercise:

"We need to have a viable agricultural industry within the UK if we wish to supply food locally. We will have to rely on external sources if we cannot achieve that. Currently, there is too much political uncertainty locally and worldwide now to be absolutely sure which way all may fall."

"Politics and food security as a political objective are the most important drivers of agriculture."

"Producing cheap food is a key driver for farmers now and I do not see that changing."

"UK is very food secure at the moment but it is not self-sufficient."

"We may be able to absorb population increase than weather shocks."

# Q2: How do these drivers impact on the main irrigation sub-sectors in the UK, and Anglian region?

Building on participant feedback from the previous question, the scope of the discussion then focused to the irrigation sub-sector. For this, a PESTE (political, economic, social, technical and environmental) analysis framework was used. PESTE is a framework of macro-environmental factors used in the environmental scanning component of strategic management. It is part of an external analysis when conducting a strategic analysis or doing market research, and gives an overview of the different macro-environmental factors to be taken into consideration. It is a strategic tool for understanding market growth or decline, business position, potential and direction for operations. The approach was explained to participants (Appendix 2).

Workshop participants were asked to write down (on post-it stickers), three 'change factors' linked to each component of the PESTE framework (Figure 1). Table 3 to Table 7 summarise the factors reported in this exercise, aggregated by PESTE sector. Overall, the PESTE analysis exercise seemed to work reasonably well. Participants were initially concerned about potential duplication with the previous question, although they were encouraged to repeat their responses if they considered them relevant for the irrigation sub sector. Despite some of the factors identified being applicable to the general agricultural sector, the approach did provide an opportunity to drill down deeper into the irrigation sub-sector.



Figure 1 Posters produced from the PESTE analysis for the UK Irrigation sector.

'Change factors' were clustered into common themes for each PESTE component. Political and related policy factors, apart from having the largest number of responses (33), also had the largest variety of cluster themes. Abstraction reform, income support, immigration policy and competition for water resources were the most common themes initially identified during the workshop.

Subsequent analysis of the responses resulted in identifying 'environmental policy', 'population policy' and 'imports/exports policies' as additional political factors. With regard to economic factors, the responses were broadly aggregated under 'cost of water' and 'world prices' themes. Social factors included the 'value of environment', 'diet', 'preference of locally produced food' and 'labour'. Technological factors focused on either crop science with special importance of attributed to developing new climate-change-adapted varieties, and water technologies, especially oriented towards increasing efficiency of supply. Finally, the environmental factors were mainly focused on 'measures for environmental protection', 'climate change', and 'water availability for the environment'.

There were a number of identified factors that clearly overlapped across topics, with water being the most common denominator. This highlights the importance that access to and availability of water, and the policies regulating this resource, have on UK agriculture, particularly for the irrigated sub-sector. Another overlapping factor was policy. Policies regulating all the different factors included in the PESTE analysis were reported to be crucial within the UK irrigation sector. Most of discussions captured during this exercise often included the importance that future policies would have on any factor being considered.

**Table 3** Summary of 'political' drivers affecting irrigation water demand in the UK and Anglian region.

| Political drivers                                                                                               | Cluster topic         |  |
|-----------------------------------------------------------------------------------------------------------------|-----------------------|--|
| Legislation: pesticides, stewardship                                                                            | Agric policy          |  |
| Importance of self-sufficiency                                                                                  | Agric policy          |  |
| Support for food self-sufficiency, employment, farming                                                          | Agric policy          |  |
| Domestic agricultural policy                                                                                    | Agric policy          |  |
| Government support to build agriculture food export opportunities                                               | Agric policy          |  |
| Farm /Food support mechanism availability of more level???                                                      | Agric policy          |  |
| Avoidance (or imposition) of constraints on (food) imports                                                      | Agric policy          |  |
| Brexit impacts on agriculture policy – whether food self-sufficiency needs to increase to counter market change | Agric policy          |  |
| Sustainable abstraction and licence changes                                                                     | Abstraction policy    |  |
| Length of permit timeline                                                                                       | Abstraction policy    |  |
| License format                                                                                                  | Abstraction policy    |  |
| Abstraction reform and allocation to agriculture                                                                | Abstraction policy    |  |
| Increased environmental policies and regulation post-Brexit                                                     | Env policy            |  |
| Government regulation                                                                                           | Env policy            |  |
| Housing development policies – Loss of land for agriculture                                                     | Env policy            |  |
| Strength of environmental regulation                                                                            | Env policy            |  |
| Export driver                                                                                                   | Env policy            |  |
| Planning policies                                                                                               | Env policy            |  |
| Visas for migrant workers                                                                                       | Immigration policy    |  |
| Employment, migrant workers availability                                                                        | Immigration policy    |  |
| Labour availability plus costs for agriculture                                                                  | Immigration policy    |  |
| Migrant labour                                                                                                  | Immigration policy    |  |
| Farm support RPA?                                                                                               | Income support        |  |
| Commitment to support agriculture as a social policy                                                            | Income support        |  |
| Removal of farm income support                                                                                  | Income support        |  |
| Defra and its conflicting functions                                                                             | Income support        |  |
| Subsidies to agriculture                                                                                        | Income support        |  |
| Water availability                                                                                              | Competition for water |  |

| Agriculture's ranking in water resource table of need/use           | Competition for water |
|---------------------------------------------------------------------|-----------------------|
| Competition for water from domestic/industry                        | Competition for water |
| Investment in water resource infrastructures to support agriculture | Competition for water |

**Table 4** Summary of 'economic' drivers affecting irrigation water demand in the UK and Anglian region.

| Economic drivers                                                                         | Cluster topic                         |
|------------------------------------------------------------------------------------------|---------------------------------------|
| Quantify risk to make decision regarding investment for farming (evidence/uncertainty)   | Agric economics                       |
| Confidence or uncertainty in future direction                                            | UK macro economy                      |
| GDP growth (ability to pay)                                                              | UK macro economy                      |
| Price of water                                                                           | Irrigation benefits and costs         |
| Cost of irrigation                                                                       | Irrigation benefits and costs         |
| Cost of water                                                                            | Irrigation benefits and costs         |
| Cost of water and farming                                                                | Irrigation benefits and costs         |
| Cost of water as % of production costs                                                   | Irrigation benefits and costs         |
| Incentives for reservoirs                                                                | Irrigation benefits and costs         |
| Payments for ecosystems services                                                         | Irrigation benefits and costs         |
| Economies of scale                                                                       | Irrigation benefits and costs         |
| Viable farming business model                                                            | Irrigation benefits and costs         |
| Land values linked with water availability 'value of water'                              | Irrigation benefits and costs         |
| Energy Input costs                                                                       | Irrigation benefits and costs         |
| Value of water and funding/cost of future (multi-sector?)                                | Irrigation benefits and costs         |
| Availability of capital funds/support for infrastructure development                     | Irrigation benefits and costs         |
| Generating data to support the 'irrigators position' what data and how much cost?        | Irrigation benefits and costs         |
| World market conditions – free trade                                                     | International economic factors        |
| Foreign exchange rates affecting                                                         | International economic factors        |
| Comparative prices of imported food (exchange rate, tariffs)                             | International economic factors        |
| World food prices                                                                        | International economic factors        |
| Prices for fresh produce                                                                 | International economic factors        |
| Food prices/stability of supply                                                          | UK agric and food sector<br>economics |
| Food prices and role of supermarkets                                                     | UK agric and food sector economics    |
| Supply chain (local, national, international) perspectives                               | UK agric and food sector economics    |
| Links between Anglian food + "???" Med production                                        | UK agric and food sector economics    |
| Profitability of rainfed farming                                                         | UK agric and food sector economics    |
| Loss of imports due to competition from other countries, eg<br>China                     | UK agric and food sector<br>economics |
| Cheap food imports reducing economic viability of irrigated production in Anglian Region | UK agric and food sector economics    |

**Table 5** Summary of 'social' drivers affecting irrigation water demand in the UK and Anglian region.

| Social drivers                                                                                                                        | Cluster topic                                |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Dietary choice (exotics, out of season food)                                                                                          | Dietary preference<br>and behaviour          |
| Food habits, healthier eating                                                                                                         | Dietary preference<br>and behaviour          |
| Quality of food required (cosmetic)                                                                                                   | Dietary preference<br>and behaviour          |
| Consumer preferences and trends                                                                                                       | Dietary preference<br>and behaviour          |
| Consumer tastes. Subject to economic constraints                                                                                      | Dietary preference<br>and behaviour          |
| Health                                                                                                                                | Dietary preference<br>and behaviour          |
| Changing consumer food choice and acceptability and quality and price                                                                 | Dietary preference<br>and behaviour          |
| Effect of wider economy on consumer preference (??? To org veg boxes which were supported until 2008 crash in financial markets)      | Dietary preference<br>and behaviour          |
| Food affordability                                                                                                                    | Dietary preference<br>and behaviour          |
| % of income to spend on food                                                                                                          | Dietary preference<br>and behaviour          |
| Consumer awareness/food provenance                                                                                                    | Dietary preference<br>and behaviour          |
| Water competition for manufacturing + PWS. Who has to pay?                                                                            | Dietary preference<br>and behaviour          |
| Quality of food required (cosmetic                                                                                                    | Dietary preference<br>and behaviour          |
| Population growth                                                                                                                     | Population and demographics                  |
| Population and population structure and composition                                                                                   | Population and demographics                  |
| Demography and population change. Impacting supply (labour) and demand (consumption)                                                  | Population and demographics                  |
| Availability of Easter Central EU labour for harvesting irrigated produce                                                             | Population and demographics                  |
| Expectations for the world around us<br>Environmental importance                                                                      | Value of environment<br>Value of environment |
| Leisure expectation<br>Support for conserving landscape                                                                               | Value of environment<br>Value of environment |
| Competition for water for social purposes by an increased population in region – wildlife areas, recreation                           | Value of environment                         |
| Generational replacement of farmers. Willingness to work in agriculture                                                               | Social motivation                            |
| Attitudes to sustainability<br>Housing development on agricultural land. Changing rural communities +<br>attitudes to food production | Social motivation<br>Social motivation       |
| Demand for local food                                                                                                                 | Local food                                   |
| Change in demand for locally grown/organic crops<br>Consumer 'local foods'                                                            | Local food<br>Local food                     |

**Table 6** Summary of 'technology' drivers affecting irrigation water demand in the UK and Anglian region.

| Technology drivers                                                                                                                                                 | Cluster topic      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| GM and other agricultural technologies. Lower water per unit of production                                                                                         | Crop related       |
| Breeding drought resistance                                                                                                                                        | Crop related       |
| Chemical use                                                                                                                                                       | Crop related       |
| Plant breeding for drought tolerance                                                                                                                               | Crop related       |
| New crops (GM or climate adapted)                                                                                                                                  | Crop related       |
| Improved water use by new varieties – across all sector                                                                                                            | Crop related       |
| GM                                                                                                                                                                 | Crop related       |
| Varietal development: drought tolerance, shorter seasons, scab resistance                                                                                          | Crop related       |
| Automation of harvesting                                                                                                                                           | Crop related       |
| GM will be introduced but adoption and impact in this time frame will be limited                                                                                   | Crop related       |
| Reservoirs                                                                                                                                                         | Water related      |
| Availability of technical expertise and support (R&D funding)                                                                                                      | Water related      |
| Cheap affordable control of water use. Targeted application, automated.                                                                                            | Water related      |
| New sources of water                                                                                                                                               | Water related      |
| Desalination                                                                                                                                                       | Water related      |
| Technology development in precision applications                                                                                                                   | Water related      |
| GM drought resistance crops                                                                                                                                        | Water related      |
| Use of soil water management systems                                                                                                                               | Water related      |
| Irrigation efficiency (drip irrigation – lower system losses)                                                                                                      | Water related      |
| Availability of smart technologies and extension services for precision agriculture expansion/uptake                                                               | Water related      |
| Advances in water treatment technology (is desalination really a feasible option?)                                                                                 | Water related      |
| Improved soil management and water holding capacity allied with adoption<br>of wider/more accurate assessment of crop water demand and application<br>will improve | Water related      |
|                                                                                                                                                                    |                    |
| Development in protected cropping (eg indoor production of all salad crops)                                                                                        | Integrated systems |
| Increase in yield (reducing area needed and water needed)                                                                                                          | Integrated systems |
| Feasibility of sustainable intensive irrigated food                                                                                                                | Integrated systems |
| Integration of Big Data $\rightarrow$ informatics into agriculture                                                                                                 | Integrated systems |

**Table 7** Summary of 'environmental' drivers affecting irrigation water demand in the UK andAnglian region.

| Environmental drivers                                                                   | Cluster topic |
|-----------------------------------------------------------------------------------------|---------------|
| Climate variability (weather extremes)                                                  | Climate       |
| Climate change                                                                          | Climate       |
| Climate change impacts                                                                  | Climate       |
| Drought risk and increased water scarcity                                               | Climate       |
| CC/ increase drought frequency outside UK pushing production towards us                 | Climate       |
| Increased EA weather variability (affects risk+investment decision)                     | Climate       |
| Agricultural sectors response to and planning for future droughts (worse than historic) | Climate       |
| Regulation and standards. Env protection, GM, pesticides                                | Environmental |
|                                                                                         | protection    |
| Rest of industry cleaned up its act, therefore WQ, flow and                             | Environmental |

|                                                                            | :                |  |  |
|----------------------------------------------------------------------------|------------------|--|--|
| hydromorphology problem in aquatic environments focus on                   | protection       |  |  |
| diffuse/catchment/landscape effects                                        |                  |  |  |
| RSPB/WWF (interests and activities)                                        | Environmental    |  |  |
|                                                                            | protection       |  |  |
| Support mechanism for environmental stewardship                            | Environmental    |  |  |
|                                                                            | protection       |  |  |
| Working in partnership                                                     | Environmental    |  |  |
|                                                                            | protection       |  |  |
| Catchment focus on rules and management                                    | Environmental    |  |  |
|                                                                            | protection       |  |  |
| Loss of multifunctional benefits of agriculture. Reducing environmental    | Environmental    |  |  |
| connection between land management and environment                         | protection       |  |  |
| Need for adaptation measures to protect biodiversity. Pressure to reduce   | Environmental    |  |  |
| agricultural demands in water and increase of water dependent habitats     | protection       |  |  |
| Public perception of a good environment                                    | Environmental    |  |  |
|                                                                            | protection       |  |  |
| Standards and regulation / environmental protection                        | Environmental    |  |  |
|                                                                            | protection       |  |  |
| Environmental importance                                                   | Environmental    |  |  |
|                                                                            | protection       |  |  |
| Volume of environment/concept of natural capital                           | Environmental    |  |  |
|                                                                            | protection       |  |  |
|                                                                            |                  |  |  |
| (Need for) Clean water (means cheaper water??)                             | Water management |  |  |
| Minimal headroom in abstraction licensing. Inability to increase water use | Water management |  |  |
| when need arises                                                           |                  |  |  |
| Reduced water allocation for agriculture to support environmental          | Water management |  |  |
| needs/ecosystems                                                           | L Č              |  |  |
| Availability of water                                                      | Water management |  |  |
| Water licensing                                                            | Water management |  |  |
| Acceptability/constraints on chemicals                                     | Water management |  |  |
|                                                                            |                  |  |  |

#### Q3: For two contrasting future scenario, what are the likely directions and magnitude of change in the components of irrigation water demand?

In this third exercise, participants were split into two groups to discuss two contrasting future socioeconomic scenario - "Global Sustainability" and "Uncontrolled Demand Regionalisation". Each group was asked to discuss the potential direction and magnitude <u>of change</u> relative to the underlying baseline situation for a number of defined micro-components of demand within three main irrigation sub-sectors (arable, horticulture and potatoes) over the next c30 years. Participants used stickers to indicate their perceptions of the direction and magnitude of change on posters. For each scenario, the key findings are summarised in Table 8 and Table 9.

**Table 8** Direction and magnitude of change for irrigation micro-components under the "Sustainable
 Globalisation" scenario relative to the baseline situation.

| Sector       | Consumption<br>per head | Proportion<br>UK-grown | Yield | Proportion<br>irrigated | Agro/Eco<br>Optimum                                              | Irrigation<br>efficiency |
|--------------|-------------------------|------------------------|-------|-------------------------|------------------------------------------------------------------|--------------------------|
| Arable       | <b>←→</b>               | <b>←→</b>              | ◆     | €→                      | <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | ←→                       |
| Potatoes     | ↓                       | <b>↑</b>               | ↑     | <b>↑</b>                | ←→                                                               | ★                        |
| Horticulture | <b>^</b>                | <b>^</b>               | ተተ    | ተተ                      | ↔                                                                | <b>^</b>                 |

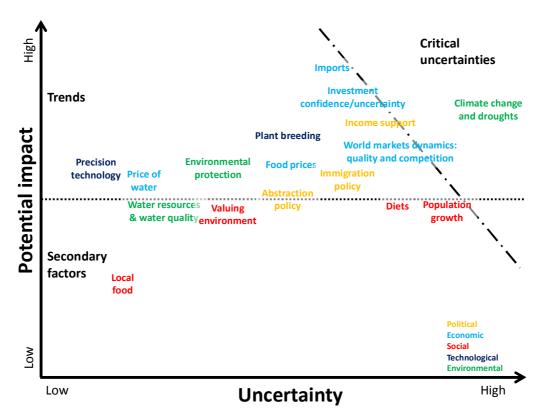
**Table 9** Direction and magnitude of change for irrigation micro-components under the"Uncontrolled Demand Regionalisation" scenario.

| Sector       | Consumption<br>per head | Proportion<br>UK-grown | Yield    | Proportion<br>irrigated | 5          | Irrigation<br>efficiency |
|--------------|-------------------------|------------------------|----------|-------------------------|------------|--------------------------|
| Arable       | <u>ተተ</u>               | ተተ                     | <b>^</b> | ተተተ                     | <b>→</b> ← | ++                       |
| Potatoes     | <b>↑</b>                | 1                      | ←→       | <b>^</b>                | →←         | +                        |
| Horticulture | <b>←→</b>               | <b>^</b>               | <b>^</b> | <b>^</b>                | <b>→</b> ← | <b>↓</b>                 |

Note: \*Thus group felt that the agronomic and economic optimum for irrigation would converge.

For "Sustainable, globalisation", the group agreed that horticultural products would increase their presence in the typical UK resident's diet to the detriment of starchy products. In a globalised world with open markets, but with society caring for sustainability of the products consumed, there would be a slight tendency towards producing more in the UK. Slightly better yields would be achieved relative to the baseline following sustainable practices with the exception of horticulture. The proportion irrigated would have to increase in order to produce more food for the country in order to reduce imports that might be harmful to exporting countries. Efficiency of irrigation would increase in the same proportion as the irrigated land in order to make a sustainable use of water resources. The group considered that nowadays farmers irrigate to reach the economic optimum and this would not change in the scenario.

For "Uncontrolled demand, regionalisation", the protectiveness of the situation would mean that only crops currently produced in the UK increased their rates of consumption. In addition, the same reason would apply for the need to increase the proportion grown within the UK. Yields would likely stay the same or increase slightly mostly due to the increase in the proportion of the land irrigated. Efficiency would fall due to the lack of incentives for promoting efficiency.


Broadly, this exercise worked and continued through a working lunch. The participant feedback on the two scenario were broadly consistent with the narratives that had been drafted previously and circulated before the workshop. However, in hindsight instead of providing each group with a single scenario and then determining any changes or differences relative to a baseline, it would perhaps have been better to present each group with two diametrically opposing scenario. This would have led to greater differences between the outcomes for the two scenario considered here. However, this would have required significantly more time dedicated to micro-component analysis and scenario comparison.

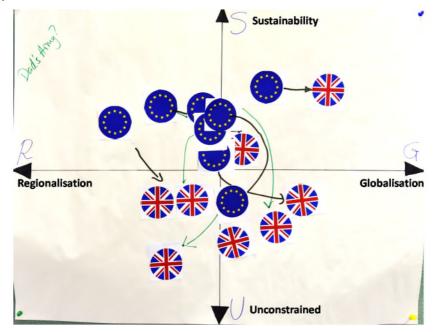
# Q5: What are the main gaps and uncertainties in our knowledge and understanding of Q1-4?

The preceding exercises identified a wide range of contrasting factors within the PESTE framework that could influence the future direction and composition of UK agriculture. These were broadly classified under the five individual PESTE categories. For each factor (e.g. income support; water pricing) there is of course imperfect knowledge on its consequences and uncertainty regarding the its potential impact on UK agriculture. The purpose of this exercise was therefore to identify which factors had the greatest uncertainty and which could lead to the highest impact on future agricultural water demand. Each participant was asked to identify two factors (high-level constructs) from the PESTE analysis which they considered potentially to have a medium to high impact, and to position them on an impact-uncertainty matrix (Figure 2).

The impact-uncertainty matrix divides factors between those that may have a low potential impact, irrespective of their uncertainty, and those that may have a high potential impact. The former are termed 'secondary factors' and the latter are 'trends'. The focus of this exercise was on the latter, with special attention paid to those factors that had both a high potential impact and a high degree of uncertainty, so-called critical uncertainties (Figure 2).

**Figure 2** Uncertainty matrix derived from the PESTE analysis of irrigation water demand (Question 2).




Climate change and droughts were identified as being the most uncertain high potential impact factor, followed by population growth. A number of key economic and political driven factors including income support imports and world market dynamics were also selected as being close to the critical uncertainty threshold.

In general, there was a tendency to place the factors around the medium impact line but with different levels of uncertainty. There was also some reluctance to place factors within the critical uncertainties area, with some of accumulating along the boundary.

# Q6: Brexit: What are the implications for irrigated agriculture and irrigation demand in the UK and Anglian region?

In addition to the socio-economic scenarios being considered within WRE that generally have a longer time frame for potential realisation, there is currently significant additional uncertainty in relation to future relationships between the UK and European Union due to Brexit. This may have strongly impact on future socio-economic and agro-economic policy and thus directly influence the irrigated agriculture sector in numerous ways (positive and negative). In this final exercise, through facilitated discussion, participants considered viewpoints on the Brexit effect on agriculture and irrigation both in the UK and more regionally. Following open discussion, participants were asked to position a sticker corresponding to pre-Brexit and post-Brexit on a socio-economic scenario matrix and to indicate the direction of change (Figure 3).

Figure 3 Participant's estimation of the current socio-economic scenario and evolution after Brexit.



The discussion was predominantly on where the UK is currently with respect to agricultural trade and policy and how that might change in future. There was greater consensus on the former (with an intermediate point between globalisation and regionalisation in terms of governance and some sustainability driven social values) than on the latter (which split into a world market and localised protectionist future). The general feeling was perhaps towards uncontrolled globalisation (world market) with UK agriculture left to fend for itself. Brexit could result in less environmental and agricultural regulation. However, it was recognised that some regulations had their origins in Britain. Some sectors will not want environmental protection regulations withdrawn and it will depend on agreements the UK signs with different countries with looser and or tighter regulations.

There was also discussion regarding the positive aspects that Brexit might bring to UK irrigated agriculture and horticulture. There was general agreement that irrigated agriculture could benefit from Brexit, especially for crop sectors that are currently less dependent on agricultural policy support. The point was raised that In recent decades there has been some levelling off in the productivity of UK agriculture relative to its international competitors, partly associated with the retention of smaller, less efficient production (although it was noted these provide other services). It was pointed out that a reduction of income support due to Brexit could lead to significant structural change in the agricultural sector. This could also expose the UK food sector to global supply risks associated with global drought and water scarcity. At the same time, however, there could be opportunities for consolidation and further specialisation in the irrigation sector. The latter could be associated with efficiency gains, and opportunities for the import substitution of high value produce affected by changes in trading arrangements due to Brexit.

### Appendix 1: Workshop agenda

## WRE: assessing future changes in agricultural water demand in Anglian region: Key informant workshop

Weds 15<sup>th</sup> February 2017, 09:30 to 14:00

Hardwicke Room, 2<sup>nd</sup> floor, Building 62, Cranfield University, Cranfield MK43 0AL

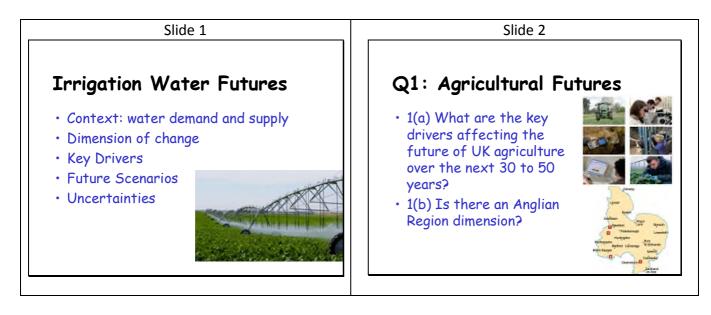
| Time  | Description                                                                                                                                                                                                                                                                                  |                  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 09:15 | Arrival, coffee and refreshments                                                                                                                                                                                                                                                             | All              |
| 09:30 | Welcome and introduction; workshop objectives                                                                                                                                                                                                                                                | Jerry            |
| 09.35 | Participant introduction                                                                                                                                                                                                                                                                     | All              |
| 09:45 | Introduction to the 4 future socio-economic scenario and agricultural narratives                                                                                                                                                                                                             | Joe              |
| 10:00 | <b>Q1</b> what are the key drivers affecting UK agriculture over the next 30 years; what are the Anglian region dimensions? Post-it and talk session                                                                                                                                         | Joe lead<br>All  |
| 10:15 | <b>Q2</b> How do these drivers impact on the main irrigation subsectors in the UK, and Anglian region?<br>Participant PESTE exercise and group discussion                                                                                                                                    | Joe/Jerry<br>All |
| 11:00 | <ul> <li>Q3 For two contrasting future scenario (Global Sustainability and Uncontrolled demand), what are the likely directions and magnitude of change in the components of irrigation water demand?</li> <li>Exercise with participants in 2 groups, followed by group feedback</li> </ul> | Joe lead<br>All  |
| 11.40 | Q4 With respect to Q3, what are the major differences in drivers between the two scenario, and likely expected differences in irrigation water demand?         Facilitated discussion                                                                                                        | Joe/Jerry<br>All |
| 12:00 | <b>Q5</b> What are the main gaps and uncertainties in our knowledge and understanding of Q1-4? Uncertainty mapping                                                                                                                                                                           | Joe              |
| 12:30 | <b>Q6: Brexit</b> : What are the implications for irrigated agriculture and irrigation water demand in the UK and Anglian region Facilitated discussion                                                                                                                                      | Joe              |
| 13.00 | Buffet lunch and continued open discussion around Q6                                                                                                                                                                                                                                         | All              |
| 13.45 | Workshop close and depart                                                                                                                                                                                                                                                                    |                  |

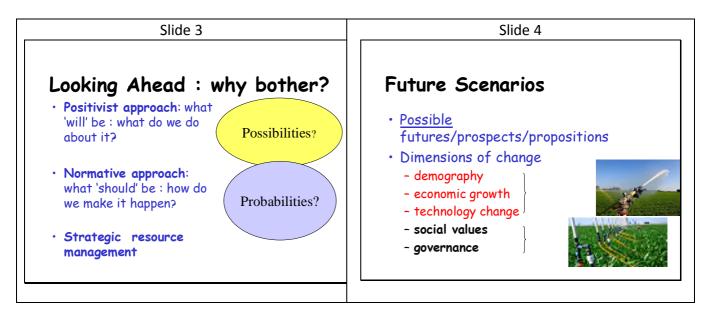
# Appendix 2: Socio-economic narratives Table 10 General UK overview by socio-economic scenario.

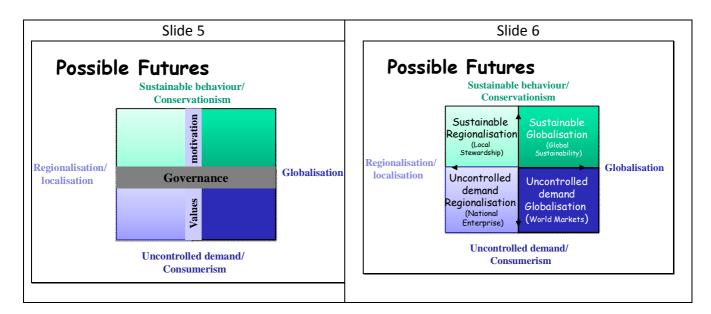
| Drivers/selected key metrics                         | Scenario 1 (sustainable, regionalisation)                                                                                                      | Scenario 2 (sustainable, globalisation)                                                                                                        | Scenario 3 (uncontrolled demand, regionalisation)                                                                                                      | Scenario 4 (uncontrolled demand, globalisation)                                                                                                |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Parallel Foresight type<br>Scenario                  | Local Stewardship (increased innovation at local scale)                                                                                        | Global Sustainability                                                                                                                          | National Economy                                                                                                                                       | World Markets                                                                                                                                  |
| Value placed on water<br>and wastewater<br>resources | Broad based value based on<br>water as a natural resource,<br>including provision of public<br>goods, Explicit values for non-<br>market goods | Broad based value based on<br>water as a natural resource,<br>including provision of public<br>goods, Explicit values for non-<br>market goods | Local Economic Imperative:<br>water value based on<br>willingness/ability to pay by<br>dominant public regional water<br>supply and industrial sectors | Economic imperative: water<br>value based on market value<br>added and ability to pay Virtual<br>markets in water through<br>commodity trading |
| Water consumption                                    | Prudent – minimum waste,<br>inherent water value                                                                                               | Prudent: wise water use<br>encouraged by campaigns and<br>pricing                                                                              | Imprudent, limited incentive for using (cheap and accessible) water wisely                                                                             | Imprudent – flush and forget, but<br>water pricing gives incentives to<br>adopt water saving                                                   |
| Society's response to<br>climate change              | Proactive response resulting in<br>local adaptation and mitigation<br>solutions                                                                | Proactive response resulting in national adaptation and mitigation solutions                                                                   | Customers unlikely to change<br>behaviours but expect<br>organisations to be resilient                                                                 | Focus on technical solutions rather than behavioural change                                                                                    |
| Competition between sectors                          | Strong focus on the environment                                                                                                                | Balanced                                                                                                                                       | Strong focus on agriculture and energy                                                                                                                 | PWS main draw on water                                                                                                                         |
| Regulatory<br>environment                            | Catchment-based, through local<br>political systems; any regional or<br>national investments occur only<br>through local cooperation           | Strict national – sustainability<br>focused (international<br>environmental legislation key)                                                   | Strict, national regulation –<br>consumer (including industrial)<br>protection and price focussed                                                      | Economically and<br>environmentally market driven<br>(limited regulation)                                                                      |
| Likely energy sources                                | Low carbon – renewable; local power generation                                                                                                 | Low carbon – renewable and nuclear; national grids                                                                                             | Fossil fuels – UK shale gas and coal                                                                                                                   | Fossil fuels – foreign sources                                                                                                                 |
| UK industry                                          | Service based, with some low-<br>tech R&D<br>Balanced national economy,<br>reflecting regional comparative<br>advantage                        | Resurgent, high-tech<br>engineering, design and<br>manufacture, supported by<br>international R&D and<br>exchange                              | Resurgent, traditional<br>manufacturing and heavy<br>industry<br>Protected and introspective.<br>Internal regional trade                               | Driven by international<br>comparative advantage with 'free<br>trade' agreements. Service and<br>knowledge based                               |
| State of the economy                                 | Growth: Low GDP<br>Low geni factor<br>Stable; diminished national                                                                              | Growth: High GDP<br>Low geni factor<br>Buoyant, based on green                                                                                 | Growth: Moderate GDP,<br>Moderate geni factor. 'Closed'<br>markets, high self-sufficiency;                                                             | Growth: High GDP<br>High geni factor<br>Open economy, unbalanced                                                                               |

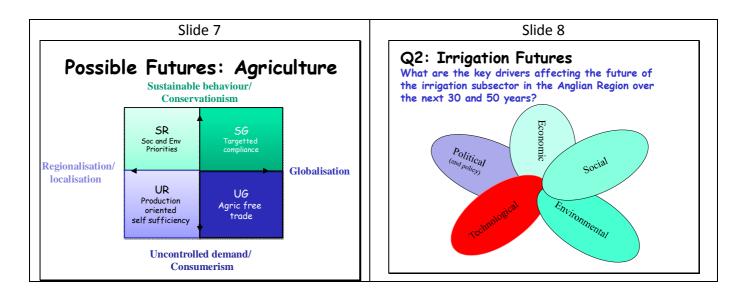
| Drivers/selected key metrics       | Scenario 1 (sustainable, regionalisation)                                                                                                                                                                                           | Scenario 2 (sustainable, globalisation)                                                                                                                                                                                                                                                             | Scenario 3 (uncontrolled demand, regionalisation)                                                                                                                                                                          | Scenario 4 (uncontrolled demand, globalisation)                                                                                                                                                                                         |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | public sector, increased self-<br>sufficiency in bulk commodities                                                                                                                                                                   | growth                                                                                                                                                                                                                                                                                              | based on manufacturing<br>(however growth more limited<br>than Scenario 4), protectionist                                                                                                                                  | sectoral and regional development, vulnerable to shocks                                                                                                                                                                                 |
| Investment and access to capital   | Constrained; some local, private finance is available. Cooperative ventures                                                                                                                                                         | Investment in high-tech, green<br>industry, International funding,<br>green bank<br>Joint PP partnerships                                                                                                                                                                                           | Low investment; limited access<br>to capital<br>Government funding sources,<br>including subsidies                                                                                                                         | International investment in<br>services and infrastructure,<br>driven by financial returns. PFI<br>options                                                                                                                              |
| Competition in the water sector    | Local water companies. River<br>basin solutions ?Competition<br>from new entrants – local<br>suppliers, technology innovators                                                                                                       | Competition between existing<br>companies and new entrants:<br>international market in<br>'sustainable' water services                                                                                                                                                                              | Competition between existing<br>companies. National/regional<br>water companies: Government<br>funded regional transfers                                                                                                   | Strong competition; attractive to<br>existing and new entrants (and<br>investors) Global water                                                                                                                                          |
| Innovation                         | Variable: actively promoted in<br>some sectors but constrained by<br>funds and capabilities.<br>Strong focus on small scale, low<br>tech appropriate solutions to<br>improve resource efficiency and<br>self-sufficiency solutions. | Actively promoted and funded.<br>Visionary approach. Strong<br>focus on high tech-green<br>solutions to reduce<br>environmental and resource<br>footprints. Growth information<br>technology and artificial<br>intelligence employed to<br>balance economic, social and<br>environmental objectives | Driven by short term needs and<br>vision.<br>'Make do and mend' approach:<br>focus is on infrastructure life<br>extension.<br>Fragmented and somewhat<br>isolationist approach to<br>innovation, mainly remedial<br>driven | Responsive to market needs<br>Focus on building technical<br>solutions to relieving resource<br>constraints and environmental<br>problems<br>High automation and robotics.<br>IT and AI growth sectors in<br>response to market drivers |
| GDP % growth                       | 0.5%                                                                                                                                                                                                                                | 1.7%                                                                                                                                                                                                                                                                                                | 1.5%                                                                                                                                                                                                                       | 2%                                                                                                                                                                                                                                      |
| Pop % growth national              | Very Low 0.1%                                                                                                                                                                                                                       | Moderate0.5%                                                                                                                                                                                                                                                                                        | Low 0.35%                                                                                                                                                                                                                  | High 0.7%                                                                                                                                                                                                                               |
| Pop (East regional)                | Very Low 0.1%                                                                                                                                                                                                                       | Moderate0.5%                                                                                                                                                                                                                                                                                        | Low 0.35%                                                                                                                                                                                                                  | High 0.7%                                                                                                                                                                                                                               |
| Income distribution<br>Geni coeff: | Low 0.3                                                                                                                                                                                                                             | Moderate 0.35                                                                                                                                                                                                                                                                                       | Moderate 0.35                                                                                                                                                                                                              | High Geni 0.4                                                                                                                                                                                                                           |
| Agric self-sufficiency             | High 75%                                                                                                                                                                                                                            | Moderate 65%                                                                                                                                                                                                                                                                                        | High 75%                                                                                                                                                                                                                   | Low 55%                                                                                                                                                                                                                                 |
| Agric as % of GDP                  | High (1.5 - 2%)                                                                                                                                                                                                                     | Low (0.6%)                                                                                                                                                                                                                                                                                          | High (1.2%)                                                                                                                                                                                                                | Low 0.5%                                                                                                                                                                                                                                |
| Currency exchange?<br>\$US/£S      | Low 1.2<br>Import substitution. Food and<br>fossil energy imports expensive                                                                                                                                                         | Moderate 1.4<br>Neutral currency effects: Some<br>trade in niche products                                                                                                                                                                                                                           | Low 1.3<br>Import substitution. Food and<br>energy imports expensive: High<br>value exports                                                                                                                                | High 1.6<br>Relatively cheap imports.<br>Increased import orientation.<br>Exports expensive                                                                                                                                             |

|       |                                                                                                                                             |                                                                                        | •                                                                                                                              | Scenario 4 (uncontrolled demand, globalisation) |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Diets | High healthiness: Healthier<br>eating promoted by combination<br>of awareness and necessity. Low<br>disparities. Fresh produce<br>important | awareness and scope for<br>healthier diets. Medium<br>disparities. Varied diets. Fresh | awareness and dietary options.<br>Consumption is price rather than<br>health sensitive. High<br>consumption of processed foods | High priced fresh and niche                     |

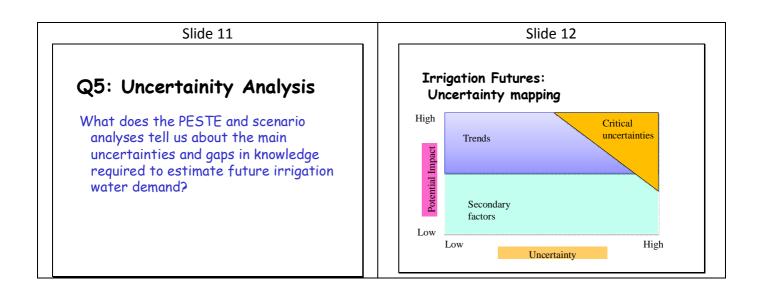

#### Table 11 Key agricultural drivers of change, by scenario.


| Agricultural sector drivers      |                                                                                                                                                                                                                                                                                                                          | Scenario 2 (sustainable,<br>globalisation) (SG)                                                                                                                   | Scenario 3 (uncontrolled demand, regionalisation) (UR)                                                                                                                                                                                                            | Scenario 4 (uncontrolled<br>demand, globalisation) (UG)                                                                                                                                                                                                                                                                                         |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Agricultural and<br>rural policy | rural support regimes in<br>accordance with local needs and<br>priorities reflecting self reliance,<br>social and environmental<br>objectives. Support for small<br>family farms urban agriculture and<br>allotments. Development defined<br>in terms of conservation and<br>community: a living/working<br>countryside. |                                                                                                                                                                   | resources', involving input and<br>commodity subsidies,<br>'deficiency' type payments and<br>marketing/intervention regimes.<br>Limited environmental and<br>social concerns. Rural economy<br>is based primarily on agriculture<br>and food. Farming is the main | equivalent national regime). WTO<br>led 'free' trade in agricultural<br>commodities. Limited<br>interventions for social or<br>environmental purposes.<br>Increased global trade in                                                                                                                                                             |
| Food markets<br>and prices       | marketing schemes to add value<br>and raise prices. Low market risk,<br>associated with diverse production                                                                                                                                                                                                               | foods. Consumer food prices rise<br>due to quality assurance and<br>compliance costs, providing<br>incentives to producers. Moderate<br>market risk due to global | and processors, define product<br>offering and criteria for food<br>quality. Government sponsored<br>supply side interventions<br>maintain high producer prices,                                                                                                  | Market led, consumer driven, with<br>increased domination of major<br>food retailers. International<br>procurement and market<br>integration, with limited reference<br>to environmental issues in food<br>trades. Real producer and<br>consumer food prices fall for<br>global bulk products, with premia<br>for niche products. High level of |


|               |                                    | and climate change                     | requiring national 'buffer stocks' | market risk associated with supply    |
|---------------|------------------------------------|----------------------------------------|------------------------------------|---------------------------------------|
|               |                                    | mitigation/adaptation                  | to managed periods of shortage.    | demand : imbalance and                |
|               |                                    |                                        |                                    | vulnerability to climate change       |
| Environmental | Generally lower environmental      | Comprehensive, integrated              | Input-intensive farming, limited   | Limited restrictions on chemical      |
| policy        | risk but fragmented and selective  | approach to the prevention             | controls on agro-chemicals and     | use, other than market imposed.       |
|               | regulation and control.            | /minimisation of diffuse pollution     | farming practices on               | Limited interest in soil and water    |
|               | Sustainable soil and water         | from agriculture. Policy mix includes  | environmental grounds.             | conservation unless affecting         |
|               | management embedded in             | regulation, voluntary measures and     | Regulation for controlling high    | production. Environmental risk        |
|               | farming culture, with policies,    | economic instruments reflecting a      | risks which prejudice              | managed through economic              |
|               | including regulation, to promote   | commitment to 'stewardship',           | commercial interests. Emphasis     | instruments. Few constraints on       |
|               | and support. Tacit understanding   | biodiversity and 'nature's             | on correction/mitigation           | land ownership and use. Energy        |
|               | of responsible land management     | contribution to people' Agreed         | remediation rather than            | prices determined by international    |
|               |                                    | international protocols require        | prevention of environmental        | markets, with limited environment     |
|               |                                    | compliance with environmental and      | risk. Land tenure agreements       | an intervention                       |
|               |                                    | ethical standards. Land tenure         | emphasise production               |                                       |
|               |                                    | covenants contain sustainability       | purposes, including                |                                       |
|               |                                    | criteria. High energy prices,          | management of strategic            |                                       |
|               |                                    | including carbon taxes                 | agricultural assets                |                                       |
|               |                                    | Production oriented farmers            | Commercially driven production     | Polarisation into commercial and      |
|               | custodians, embracing              | tempered by increasing personal        | focus, emphasis on output and      | lifestyle farmers: 'real' and 'hobby' |
|               | commitment to sustainable          |                                        | production. Farmers respond to     |                                       |
|               | livelihoods. Strong conservation   | actively seeking to balance            | clear productionist policies that  | areas to suit commercial farming,     |
|               | and community ethic. Varied        | agriculture, wildlife and natural      | reinforce 'the right to farm'.     | or as a commercial activity in        |
|               | income sources, on and off-farm    | resource management.                   | Environmental motivations          | itself.                               |
|               |                                    | Conservationists find expression in    | mainly commercially based and      |                                       |
|               |                                    | agri-environment schemes.              | remedial.                          |                                       |
|               |                                    | Moderate to high increases in          | Broad based, relatively high       | Global competition leads to highly    |
|               | agricultural area increases,       | agricultural productivity linked to    | input: high output farming to      | intensive, high technology,           |
|               |                                    |                                        | provide self-sufficiency.          | commercially driven large scale       |
|               | of marginal farm areas, including  | environment contributes to global      | Vegetables, and agro-industrial    | production by specialists,            |
|               | uplands. Commitment to             | and local (eco-system) services.       | raw materials are growth           | industrialised and global in scope,   |
|               | sustainable rural livelihoods      | Diversification/multi-functionality is | sectors. Re-establishment of       | emphasis on efficiency through        |
|               | reflecting community priorities.   | important. Strong 'compliance'         | orchard and soft fruit sectors.    | reduced unit costs for bulk           |
|               | Mix of intensive and extensive and |                                        | Mixed arable and livestock         | commodity crops in face of            |
|               | greatly diversified systems.       | agricultural areas and units'. Mainly  | farming systems, intensive         | relatively low global prices, with    |
|               | Retention of small scale, family   | large scale farms with targeted        | lowland dairy and cattle, with     | focused high quality production to    |
|               | based farming units. Low input     | policies to retain family farms.       | beef and sheep maintained in       | gain price advantage where            |
|               |                                    | Relatively high migrant labour force   | disadvantaged areas. Moderate      | possible. High dependency on          |
|               | sustainable farming. Widespread    | with strong employee protection,       | trend towards large farms but      | migrant workers across all farming    |


| adoptio  | on of Integrated Farming    | High labour cost encourages          | family farms remain viable,       | sectors, with high level of       |
|----------|-----------------------------|--------------------------------------|-----------------------------------|-----------------------------------|
| System   | ns. GMOs rejected.          | mechanisation /automation. Growth    | given relatively strong           | mechanisation and automation,     |
| Relative | ely labour intensive, low   | of 'multifunctional' farms providing | commodity prices and technical    | and contract /contractor-based    |
| wage s   | systems, with high          | range of non-agric public goods      | support. Low dependency on        | farming. Agriculture consolidates |
| particip | pation of non-migrant       | supported by payments, including     | migrant workers , except for      | in areas with comparative         |
| season   | al workers, with variable   |                                      | seasonal tasks. Patchy adoption   |                                   |
| employ   | /ee protection. Relatively  | areas. Selected adoption of GMOs,    | of GMOs, given limited (relative) | land 'abandoned', especially in   |
| extensi  | ive livestock systems, part | driven by environmental benefits.    | economic incentives and little    | uplands. GMOs widely promoted     |
| of mixe  | ed farming systems.         | Limits on stocking rates,            | concern about side effects.       | and adopted. Differentiated       |
| Empha    | asis on environment and     | extensification incentives, strong   | Limited by investment. Organics   | organic produce are important     |
| welfare  | e, Undifferentiated organic | welfare controls. High quality       | limited, given low incentives     | niche market. Intensive feedlot   |
| produce  | e widespread                | assurance. Some differentiated       |                                   | livestock systems, with some      |
|          |                             | organic produce.                     |                                   | extensive grazing on abandoned    |
|          |                             |                                      |                                   | cropland.                         |

### **Appendix 3: Workshop presentation (Joe Morris)**










| Slide 9                                                                                              | Slide 10                                           |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Q3: Irrigation Drivers and                                                                           | Q4 : Differences in                                |
| Scenarios                                                                                            | Drivers and Outcomes                               |
| <ul> <li>What are the direction and magnitude</li></ul>                                              | <ul> <li>What are the big differences in</li></ul> |
| of the drivers of irrigation water                                                                   | drivers between the two scenarios,                 |
| demand in the Anglian region for                                                                     | and what are the expected                          |
| TWO scenarios <li>SG:Sustainable Globalisation</li> <li>UR: Uncontrolled Demand Regionalisation</li> | differences in water demand?                       |



## **Appendix 5: Selected photos from workshop**





